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Force Constants
I1. Heteronuclear Molecules
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A general semitheoretical method for the evaluation of quadratic, cubic and quartic force con-
stants described previously is extended, and applied to the ground and excited states of heteronuclear
diatomic molecules. The agreement of the results with the experimental values is good considering
the very wide range of bond types, (neutral, ionic, covalent, excited) for which calculations have been
performed.

Eine allgemeine halbempirische Methode fiir die Berechnung der Kraftkonstanten k,, k,, k, wird
auf Grund- und angeregte Zustinde von Molekiilen aus zwei verschiedenen Atomen angewendet. Die
Ubereinstimmung mit den experimentellen Werten ist bei Beriicksichtigung der recht verschiedenen
Bindungsarten gut.

Une méthode semithéorique générale pour I’évaluation des constantes de force d’ordre deux, trois
et quatre, décrite précédemment est généralisée et appliquée aux états fondamentaux et excités de
molécules diatomiques hétéronuciéaires. L'accord des résultats avec les valeurs expérimentales est
bon si l'on tient compte du large éventail de types de liaisons étudiés (neutre, ionique, covalente,
excitée).

Introduction

In a recent paper [1] a method was proposed for the evaluation of molecular
force constants. The quadratic and higher order force constants are related to the
kinetic energy derivatives through a series of equations obtained [2, 3] by differ-
entiating the Virial theorem at R=R,:

E+ T+ R@E/dR)g, =0 (1)
ky=(d*E/dR?)g, = — (R,) " (dT/dR)g, ()

ks =5 (d*E/dR%)g, = (Re)”*(dT/dR)g, — (3R) ™ (d* T/dR?)g, (3)

ky = 1_12 (d‘l'E/dR‘l')R‘E ()

= —(R)"*@T/dR)y, + (3RY) ™ (> T/dR?)y, — (12R) ™ (> T/AR)y,
Here E is the total energy, T the electronic kinetic energy and R the internuclear
distance (=R, at equilibrium).

Simple molecular orbitals y,,,, are generated by a non-uniform scaling opera-
tion from the orbitals [4] y,,(x, y, z)for the united and separated atoms to which
the molecule reduces in the limits R—0 and R —oo. The distortions along the
x-, y- and z-axes can be represented:

Amot = Xat (<X, 1,9, 1,2) - ()
The x-, y- and z-scale factors () pass smoothly between the united and separated
atom limits, and are directly related to the charge density outside a radius equal
to the internuclear distance.
* Fellow of the 1851 Exhibition and Fellow of Peterhouse, Cambridge.
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For such a scaled molecular orbital the x-, y- and z-components of the kinetic
energy T;(n;) can be calculated from the components for the atomic orbital T,(1):

T.(n) =n;T.(1) ()
where T (1) = <x(x, y, 2)1d*/dx?| x(x, y, 2)) -
The molecular orbital kinetic energy T(n,,7,,7,) is given in terms of the atomic
orbital kinetic energy T(1, 1, 1) by:
T, 1,1)=T,(1)+ T,(1)+ T(1),
T, 1y 1) = 12 Tu(1) + 17 T, (1) + 12 T,(1).
The kinetic energy derivatives of Egs. (2), (3) and (4) can be found analytically,
given expressions for 7,(R), 7,(R) and #,(R).
dT/dR= Y Y dTj/dR= Y Y 2y, T(l)dn/dR. )]
orbitals i=x,y,z orbitals i=x,y,z

The higher order terms are obtained similarly.

Heteronuclear Diatomics

Two new problems arise in the application of the method to heteronuclear
diatomic molecules. In the first place a standard correlation table cannot be set up
which is appropriate to all species. A convenient way of deriving the table for any
molecule from a list [4] of united and separated atom orbital exponents is to
arrange the orthogonalised orbitals in order of decreasing kinetic energy. Groups
of orbitals on the united and separated atoms of the same molecular symmetry
can then be correlated in the usual way. The procedure is easily programmed and
equally applicable to homonuclear species.

There is generally a difference in the electronegativities of the atoms forming
the molecule [5]. The close relationship between the electronegativity of an atom
and its valence shell orbital scale factors is to be the subject of a later paper [6].
It should be noted that a good approximation (with average deviation of less than
0.1) to the electronegativity of an atom of the first two periods is given by the

expression: G =31n/n ®)
where # is the average orbital exponent and # the principle quantum number of the
valence shell.

The second difficulty concerns the relative weights of the two atomic orbital
components ¢, and ¢, of the molecular orbital .

X=C1¢1+C20;. ©9)
The method described here has been couched in terms such that the only explicit
details of the wavefunction appear as its orbital scale factors. The asymmetry of
the molecular orbital is implicit in the general expression for the axial and per-
pendicular scale factors:

fNe=1,=1,(1—0+0¢G,/G) (1 —0)+ M., (10)
n, = n,(1 — @) +0(2n/(2n/n,+ RG,/G,)) (11
where 7, and 7, are the united and separated atom orbital exponents, g is the inte-

gral [17 of the charge density of the separated atom orbital outside a radius
R =R, and G, and G, are the electronegativities of the two atoms. For 5, and #,
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this amounts to assuming an average value #2* for the two separated atom orbital
exponents weighted according to ¢. Thus

ns* = ey + eon?
where ¢g=1—¢ and c,=¢,
if ) =n"G,/G,

Eq. (10) follows assuming 5, = #,=#1%"(1 — 0) + n,0 = 43" + 4ne.

For 5, the effective internuclear distance [1] R is scaled in the ratio G,/G,.
The expressions (10) and (11) reduce for homonuclear molecules to the simpler
Egs. (15) and (21) of paper [1]. They are semi-empirical expressions whose limits
and detailed form are nevertheless reasonable and comprehensible. They are
justified by the accuracy of the results they predict, not only for the absolute value
of the kinetic energy, but also for its first second and third derivatives.

For the non-bonding orbitals of a heteronuclear diatomic it seemed un-
reasonable to distort the separated atom orbitals along the molecular axis, and
so the x-, y- and z-scale factors were set equal and fixed by Eq. (10). (In this case it
would be impossible to describe a pair of non-bonding orbitals in terms of the
equivalent orbital transformation of a bonding and antibonding pair.)

One small amendment has been made to paper [1]. This is to achieve a defini-
tion of #,, (the united atom orbital exponent), which allows a smooth variation of
the kinetic energy between the united and separated atom limits, regardless of
changes in orbital form. #, in (10) and (11) is defined as the number by which the
unit-scale separated atom orbital would have to be scaled to give the kinetic
energy of the united atom orbital.

- 12)

s

Nu =15

No further allowance need now be made for a change in principle quantum
number.

Results

The results for the ground states of all the diatomic molecules formed from
elements of the first and second rows of the periodic table quoted in Herschbach
and Laurie’s tables [7] are included in Table 1!. The excited states of these
molecules are too numerous to display. All excited states for which calculations
could be made of some representative molecules formed from B, C, N and O are
included in Table 2.

It should be mentioned that the factor G,/G; whose effect in Eqs. (10) and (11)
is to bias the separated atom limit of # to an average value for the two atoms, hasan
effect on the kinetic energy of the wavefunction loosely similar to that embodied
in “ionic-covalent resonance.” As R decreases from oo the wavefunction is bunched
up to an increasing extent on the atom of higher electronegativity. The inclusion
of the factor raises — (dn/dR) and thus leads to a greater value of —(dT/dR) and

! Revised values for the homonuclear molecules are also included for comparison. Slight variations
from these quoted in Paper [1] arise from the new definition of #, and also from small errors found in

Table 1 of that paper for the x-, y- and z-components of the atomic orbitals’ kinetic energies. There are
fortunately no significant differences.
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Table 1. Force constants of Diatomic molecules formed from elements of the first and second rows
(ground states)

Molecule Quadratic force Cubic force Quadratic force

constant constant constant

Calc Expt Calc Expt Calc Expt
Li, ‘2; 02 0.3 - 0.2 - 02 0.1 0.1
B, 3, 23 3.6 ~ 49 - 60 6.4 5.3
C, 1, 7.2 9.5 -178 —19.8 279 25.1
N,* ZZ’; 169 20.1 —-50.9 —535 96.6 89.1
N, ‘2’; 21.9 23.0 —~61.9 —59.2 1129 99.6
BN 6.4 8.4 ~13.4 -213 20.4 41.7
CN+ 'Z 18.4 15.7 —~45.4 -132 729 46.5
CN 2zt 18.1 16.3 —-45.0 -370 71.9 50.1
O,* an 19.1 16.6 —55.4 —476 104.5 83.7
0, 32; 11.6 11.8 ~32.7 —-29.1 60.3 453
BeO !zt 5.1 7.5 - 1.7 —154 7.8 19.4
BO 3 9.8 13.6 -20.9 —-299 31.7 40.1
Cco+  2x+ 20.6 19.8 —~535 —48.0 92.8 -
CO Lyt 20.5 19.0 ~51.4 —45.5 86.0 66.3
NO T 16.6 159 ~46.6 —413 84.5 64.4
F, 1)2’; 1.6 2.5 - 50 — 41 10.1 4.6
BeF 23+ 2.8 5.8 - 45 —~11.0 4.1 13.7
LiF !X+ 03 25 - 09 — 4.1 1.8 4.6
CF i 8.2 74 ~18.6 —-179 278 30.2
Na, IZ;; 0.1 0.2 -~ 01 - 0.1 0.1 0.1
MgO 'zt 0.5 35 — 08 — 59 09 75
MgF 2zt 0.7 32 ~ 13 — 51 12 5.0
AlO  2x+ 3.8 5.7 ~ 6.3 —11.6 6.4 13.8
AlF 1z 4.4 42 ~ 13 - 80 6.9 10.0
Si, %) 0.9 21 - 15 - 29 1.6 25
SiN . 2zt 59 73 ~-10.6 —~14.1 11.6 16.4
sio+ %z 5.7 43 —10.3 —130 112 -
Si0 1y 73 9.2 ~12.1 -18.3 11.5 232
SiF (2m* 7.6 6.7 ~13.5 — 8.1 14.1 — 36
P, lzy 4.0 5.6 ~ 1.7 - 91 9.7 8.9
Cp 2z 8.4 7.8 —158 —14.6 18.6 16.2
PN 1y+ 10.5 10.5 ~20.1 -20.5 23.7 24.6
PO i1 109 94 ~20.5 —192 232 231
S, 32; 22 50 - 47 — 84 6.6 9.0
BS 2z 5.9 6.7 —11.4 —-120 139 132
NS i 79 83 —16.7 —11.4 22.0 —
SO 357 129 79 —26.8 —16.4 344 221
Sis Lyt 04 49 - 14 7.7 22 7.6
CS i+ 92 8.5 —18.8 —16.5 239 211
CB n 1.8 43 — 41 — 83 6.2 115
Cl, 4 1.4 33 - 30 - 6.1 4.4 5.1
BCl ¥ 33 3.5 — 64 - 59 8.0 6.8
Clo 21 12.8 49 —28.0 -109 38.7 14.3
CIF 'z 9.9 4.9 —214 — 8.7 29.4 73
NaCl !'z+ 0.2 1.1 — 0.2 — 14 01 1.1
AlICT 1z 0.1 21 — 02 — 36 0.2 5.5

2 Assuming 2[T-ground state, R, = 1.549 A.
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Table 2. Force constants for some excited molecules®

Molecule® Quadratic force Cubic force Quartic force
constant constant constant
Calc Expt Calc Expt Calc®
B, A3, 2.1 2.9 — 44 — 40 5.6
BN 4300 5.5 6.3 —11.7 - a1 17.6 (13.1)
BO 4% 53 6.1 - 96 -~13.8 11.8
C, A, 8.2 11.3 —21.0 —229 338
B, 38 4.3 — 8.1 —11.7 112
a'Zy 13.4 12.2 —322 —~26.6 495
bi, 6.6 9.1 —16.5 —-19.2 26.3
ctn, 7.4 11.6 —19.4 —255 31.8
arz; 12.8 11.8 —31.5 —272 49.3
CN* ¥ 6.0 6.1 —13.9 - 54 20.7
fiz 21.9 27.2 —53.7 —114.0 85.8(277.0)
CN A1, 13.4 12.5 —322 —284 50.4
B2zt 21.2 17.8 -~54.3 —~474 90.2
J24, 4.1 4.8 — 06 —11.1 14.6 (14.7)
CO+ A%, 10.0 9.9 —234 —23.8 36.3
B2zt 16.5 12.1 —41.7 —385 70.1
CO Al 10.1 9.3 —234 —233 36.0
Biz+ 17.7 17.5 —45.8 —537 79.5
all, 14.6 12.2 ~33.5 -30.1 50.9
a3zt 6.1 6.0 —14.0 —12.5 21.2
b3zt 24.1 19.5 —61.7 —68.3 106.3
a3, 5.0 52 —11.2 —113 16.6
N, a'll, 11.3 11.8 —-31.0 -323 54.7
A3zt 10.5 88 ~26.2 —17.2 42.6
B, 11.3 12.4 —-311 -305 54.9
ci, 21.4 17.1 -~575 —44.7 99.7
N,* B2zt 254 242 -71.3 —63.2 129.0
NO A%z 289 24.7 —84.3 —61.1 159.1
B?II, 4.6 4.7 —11.6 -89 19.2
B2[1* 6.6 4.7 -17.0 —11.5 28.2
E2z+ 28.6 24.8 —83.3 ~65.6 1571
0,7 a*l, 44 5.0 —11.8 ~11.8 20.9
A, 22 3.8 — 61 - 69 11.1
bz, 6.6 6.7 —18.7 ~19.3 345
0, a'4, 111 10.7 —31.3 -~275 575
bzt 10.5 9.7 —29.4 ~253 53.8
B3z, 0.9 2.3 - 25 — 42 44

® With the omission of one or two cases which cannot be handled properly with the existing
programme all excited states given in Herschbach and Lauri€’s tables for species formed from B, C, N
and O are included.

® Simple MO theory was used to determine the atomic states to which the excited molecules
dissociate. In a few cases orbital occupancy is ambiguous however.

© Very few experimental values are available. These are given in brackets.

hence of k, from Eq. (2). In terms of the energy the calculated potential well for the
molecule is deeper when ionic-covalent resonance is included, which implies a
greater curvature (d°E/dR?) at the bottom of the well.

To check this interpretation a few specimen calculations were performed on
heteronuclear molecules in which G,/G; was set arbitrarily equal to 1. As expected
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these restricted wavefunctions yield quadratic force constants which fall below
the calculated ones; and do so to an extent which increases markedly as the
electronegativity difference between the atoms increases. A few characteristic
figures are given in Table 3.

It is gratifying to find that this method gives results close to experiment for
homonuclear, heteronuclear, ionised, neutral and excited species. The magnitudes
of the force constants of diatomic molecules can evidently be explained in terms

Table 3. The effect of restricting the electronegativity dependent term on the calculated force constant

Molecule N, CO* CO BF C, CN CN*+ CF

G,/G, =1 21.9 17.7 155 32 6.7 16.5 17.6 3.1

caled. k, 21.9 20.6 20.5 8.0 6.7 18.1 184 82
using (10) and (11)

Expt. 23.0 19.8 19.0 8.1 9.5 16.3 157 74

almost as crude as those describing the overall shape and size of the orbitals. No
attempt indeed has been made at this stage to specify a detailed form for the wave-
function. Many features which would certainly be important from the point of
view of a calculation of the total energy can be omitted from the calculation of
properties which vary with the variation in internuclear distance.
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